encoder.supernode_pooling_config

Classes

SupernodePoolingConfig

!!! abstract "Usage Documentation"

Module Contents

class encoder.supernode_pooling_config.SupernodePoolingConfig(/, **data)

Bases: pydantic.BaseModel

!!! abstract “Usage Documentation”

[Models](../concepts/models.md)

A base class for creating Pydantic models.

Parameters:

data (Any)

__class_vars__

The names of the class variables defined on the model.

__private_attributes__

Metadata about the private attributes of the model.

__signature__

The synthesized __init__ [Signature][inspect.Signature] of the model.

__pydantic_complete__

Whether model building is completed, or if there are still undefined fields.

__pydantic_core_schema__

The core schema of the model.

__pydantic_custom_init__

Whether the model has a custom __init__ function.

__pydantic_decorators__

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_generic_metadata__

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

__pydantic_parent_namespace__

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__

The name of the post-init method for the model, if defined.

__pydantic_root_model__

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__

The pydantic-core SchemaValidator used to validate instances of the model.

__pydantic_fields__

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects.

__pydantic_computed_fields__

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_extra__

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to ‘allow’.

__pydantic_fields_set__

The names of fields explicitly set during instantiation.

__pydantic_private__

Values of private attributes set on the model instance.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

hidden_dim: int = None

Hidden dimension for positional embeddings, messages and the resulting output vector.

input_dim: int = None

Number of positional dimension (e.g., input_dim=2 for a 2D position, input_dim=3 for a 3D position)

radius: float | None = None

Radius around each supernode. From points within this radius, messages are passed to the supernode.

k: int | None = None

Number of neighbors for each supernode. From the k-NN points, messages are passed to the supernode.

max_degree: int = None

Maximum degree of the radius graph. Defaults to 32.

spool_pos_mode: Literal['abspos', 'relpos', 'absrelpos'] = None

absolute space (“abspos”), relative space (“relpos”) or both (“absrelpos”).

Type:

Type of position embeddeding

init_weights: emmi.types.InitWeightsMode = None

Weight initialization of linear layers. Defaults to “truncnormal002”.

readd_supernode_pos: bool = None

If true, the absolute positional encoding of the supernode is concatenated to the supernode vector after message passing and linearly projected back to hidden_dim. Defaults to True.

aggregation: Literal['mean', 'sum'] = None

Aggregation for message passing (“mean” or “sum”).

message_mode: Literal['mlp', 'linear', 'identity'] = None

How messages are created. “mlp” (2 layer MLP), “linear” (nn.Linear), “identity” (nn.Identity). Defaults to “mlp”.

num_input_features: int | None = None

number of input features per point. None will fall back to a version without features. Defaults to None, which means no input features.

validate_radius_and_k()