emmi_inference.models.pipelines.anchor_point_sampling_precollator¶
WARNING
This file is a 1:1 duplicate from the tutorial folder.
It is here to avoid installation of a tutorial as a package and keep it isolated.
Classes¶
Randomly subsamples points from a pointcloud. |
Module Contents¶
- class emmi_inference.models.pipelines.anchor_point_sampling_precollator.AnchorPointSamplingPreCollator(items, num_points, to_prefix_and_postfix, to_prefix_midfix_postfix, keep_queries=False, seed=None)¶
Bases:
ksuit.data.SampleProcessorRandomly subsamples points from a pointcloud.
Initializes the point sampling precollator.
- Parameters:
items (set[str]) – Which pointcloud items should be subsampled (e.g., input_position, output_position, …). If multiple items are present, the subsampling will use identical indices for all items (e.g., to downsample output_position and output_pressure with the same subsampling).
num_points (int) – Number of points to sample.
seed (int | None) – Random seed for deterministic sampling for evaluation. Default None (i.e., no seed). If not None, requires sample index to be present in batch.
to_prefix_and_postfix (collections.abc.Callable[[str], tuple[str, str]])
to_prefix_midfix_postfix (collections.abc.Callable[[str], tuple[str, str, str]])
keep_queries (bool)
- items¶
- num_points¶
- keep_queries = False¶
- to_prefix_and_postfix¶
- to_prefix_midfix_postfix¶
- seed = None¶