emmi.datasets.drivaerml¶
Classes¶
Dataset implementation for DrivAerML that supports both local and AISTORE storage. |
Module Contents¶
- class emmi.datasets.drivaerml.DrivAerMLStats¶
- class emmi.datasets.drivaerml.DrivAerMLDefaultSplitIDs¶
- train¶
- val¶
- test¶
- static create_split(seed=42)¶
A helper function to create a random split of the dataset. The default indices were created with seed=42.
- class emmi.datasets.drivaerml.DrivAerMLDataset(split, root=None, ais_bucket_name=None, ais_endpoint='http://compute-permanent-node-179:8080', **kwargs)¶
Bases:
ksuit.data.DatasetDataset implementation for DrivAerML that supports both local and AISTORE storage.
Currently, supports the following properties: - position of car surface points and corresponding values for pressure and wall shear stress. - position of the volumetric cells with corresponding values for pressure, velocity and vorticity.
- Parameters:
split (str) – Which split to use. “debug” will use all available “run_X” folders. “train”, “valid”, “test” will load the splits as specified in the “train_val_test_splits/{split}_design_ids.txt” file.
root (str | None) – path to the processed dataset, e.g. /nfs-gpu/simulation/data/drivaerml_processed/subsampled_10x.
ais_bucket_name (str | None) – The name of the ais bucket on oracle object storage, e.g. ‘emmi-drivaerml-subsampled-10x’.
ais_endpoint (str) – The endpoint (host) running the AISTORE instance.
Args: dataset_config_provider: Optional provider for dataset configuration. dataset_normalizers: A dictionary that contains normalization ComposePreProcess(ers) for each data type. The key for each normalizer can be used in the with_normalizers decorator.
- is_using_ais¶
- split¶
- property default_split_ids: dict[str, list[int]]¶
Property to get the sorted split IDs for train, validation, and test sets, based on DEFAULT_SPLIT_*_IDS.
- static get_normalization_stats()¶
Returns the normalization stats for the dataset. Exists for backwards compatibility with downstream repo, where collators use this.
- Return type:
- getitem_surface_position_vtp(idx)¶
Retrieves surface positions (num_surface_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_surface_position_stl(idx)¶
Retrieves surface positions (num_surface_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_surface_position_stl_resampled100k(idx)¶
Retrieves surface positions (num_surface_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_surface_pressure(idx)¶
Retrieves surface pressures (num_surface_points, 1)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_surface_wallshearstress(idx)¶
Retrieves surface wallshearstress (num_surface_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_volume_position(idx)¶
Retrieves volume position (num_volume_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_volume_totalpcoeff(idx)¶
Retrieves volume pressures (num_volume_points, 1)
- Parameters:
idx (int)
- Return type:
torch.Tensor
- getitem_volume_velocity(idx)¶
Retrieves volume velocity (num_volume_points, 3)
- Parameters:
idx (int)
- Return type:
torch.Tensor