emmi.modules.encoder.supernode_pooling¶
Classes¶
Supernode pooling layer. |
Module Contents¶
- class emmi.modules.encoder.supernode_pooling.SupernodePooling(config)¶
Bases:
torch.nn.ModuleSupernode pooling layer.
The permutation of the supernodes is preserved through the message passing (contrary to the (GP-)UPT code). Additionally, radius is used instead of radius_graph, which is more efficient.
Initialize the SupernodePooling.
- Parameters:
config (emmi.schemas.modules.encoder.supernode_pooling_config.SupernodePoolingConfig) – Configuration for the SupernodePooling module.
- radius¶
- k¶
- max_degree¶
- spool_pos_mode¶
- readd_supernode_pos¶
- aggregation¶
- num_input_features¶
- pos_embed¶
- output_dim¶
- compute_src_and_dst_indices(input_pos, supernode_idx, batch_idx=None)¶
Compute the source and destination indices for the message passing to the supernodes.
- Parameters:
input_pos (torch.Tensor) – Sparse tensor with shape (batch_size * number of points, 3), representing the input geometries.
supernode_idx (torch.Tensor) – Indexes of the supernodes in the sparse tensor input_pos.
batch_idx (torch.Tensor | None) – 1D tensor, containing the batch index of each entry in input_pos. Default None.
- Returns:
Tensor with src and destination indexes for the message passing into the supernodes.
- Return type:
tuple[torch.Tensor, torch.Tensor]
- create_messages(input_pos, src_idx, dst_idx, supernode_idx, input_features=None)¶
Create messages for the message passing to the supernodes, based on different positional encoding representations.
- Parameters:
input_pos (torch.Tensor) – Tensor of shape (batch_size * number_of_points_per_sample, {2,3}), representing the point cloud representation of the input geometry.
src_idx (torch.Tensor) – Index of the source nodes from input_pos.
dst_idx (torch.Tensor) – Source index of the destination nodes from input_pos tensor. These indexes should be the matching supernode indexes.
supernode_idx (torch.Tensor) – Indexes of the node in input_pos that are considered supernodes.
input_features (torch.Tensor | None)
- Raises:
NotImplementedError – Raised if the mode is not implemented. Either “abspos”, “relpos” or “absrelpos” are allowed.
- Returns:
- Tensor with messages for the message passing into the super nodes and the embedding coordinates of the
supernodes.
- Return type:
tuple[torch.Tensor, torch.Tensor]
- accumulate_messages(x, dst_idx, supernode_idx, batch_idx=None)¶
Method to accumulate the messages of neighbouring points into the supernodes.
- Parameters:
x (torch.Tensor) – Tensor containing the message representation of each neighbour representation.
dst_idx (torch.Tensor) – Index of the destination (i.e., supernode) where each message should go to.
supernode_idx (torch.Tensor) – Indexes of the supernode in the input point cloud.
batch_idx (torch.Tensor | None) – Batch index of the points in the sparse tensor.
- Returns:
Tensor with the aggregated messages for each supernode.
- Return type:
- forward(input_pos, supernode_idx, batch_idx=None, input_features=None)¶
Forward pass of the supernode pooling layer.
- Parameters:
input_pos (torch.Tensor) – Sparse tensor with shape (batch_size * number_of_points_per_sample, 3), representing the point cloud representation of the input geometry.
supernode_idx (torch.Tensor) – indexes of the supernodes in the sparse tensor input_pos.
batch_idx (torch.Tensor | None) – 1D tensor, containing the batch index of each entry in input_pos. Default None.
input_features (torch.Tensor | None) – Sparse tensor with shape (batch_size * number_of_points_per_sample, number_of_features)
- Returns:
Tensor with the aggregated messages for each supernode.
- Return type: