emmi.modules.encoder.supernode_pooling

Classes

SupernodePooling

Supernode pooling layer.

Module Contents

class emmi.modules.encoder.supernode_pooling.SupernodePooling(config)

Bases: torch.nn.Module

Supernode pooling layer.

The permutation of the supernodes is preserved through the message passing (contrary to the (GP-)UPT code). Additionally, radius is used instead of radius_graph, which is more efficient.

Initialize the SupernodePooling.

Parameters:

config (emmi.schemas.modules.encoder.supernode_pooling_config.SupernodePoolingConfig) – Configuration for the SupernodePooling module.

radius
k
max_degree
spool_pos_mode
readd_supernode_pos
aggregation
num_input_features
pos_embed
output_dim
compute_src_and_dst_indices(input_pos, supernode_idx, batch_idx=None)

Compute the source and destination indices for the message passing to the supernodes.

Parameters:
  • input_pos (torch.Tensor) – Sparse tensor with shape (batch_size * number of points, 3), representing the input geometries.

  • supernode_idx (torch.Tensor) – Indexes of the supernodes in the sparse tensor input_pos.

  • batch_idx (torch.Tensor | None) – 1D tensor, containing the batch index of each entry in input_pos. Default None.

Returns:

Tensor with src and destination indexes for the message passing into the supernodes.

Return type:

tuple[torch.Tensor, torch.Tensor]

create_messages(input_pos, src_idx, dst_idx, supernode_idx, input_features=None)

Create messages for the message passing to the supernodes, based on different positional encoding representations.

Parameters:
  • input_pos (torch.Tensor) – Tensor of shape (batch_size * number_of_points_per_sample, {2,3}), representing the point cloud representation of the input geometry.

  • src_idx (torch.Tensor) – Index of the source nodes from input_pos.

  • dst_idx (torch.Tensor) – Source index of the destination nodes from input_pos tensor. These indexes should be the matching supernode indexes.

  • supernode_idx (torch.Tensor) – Indexes of the node in input_pos that are considered supernodes.

  • input_features (torch.Tensor | None)

Raises:

NotImplementedError – Raised if the mode is not implemented. Either “abspos”, “relpos” or “absrelpos” are allowed.

Returns:

Tensor with messages for the message passing into the super nodes and the embedding coordinates of the

supernodes.

Return type:

tuple[torch.Tensor, torch.Tensor]

accumulate_messages(x, dst_idx, supernode_idx, batch_idx=None)

Method to accumulate the messages of neighbouring points into the supernodes.

Parameters:
  • x (torch.Tensor) – Tensor containing the message representation of each neighbour representation.

  • dst_idx (torch.Tensor) – Index of the destination (i.e., supernode) where each message should go to.

  • supernode_idx (torch.Tensor) – Indexes of the supernode in the input point cloud.

  • batch_idx (torch.Tensor | None) – Batch index of the points in the sparse tensor.

Returns:

Tensor with the aggregated messages for each supernode.

Return type:

tuple[torch.Tensor, int]

forward(input_pos, supernode_idx, batch_idx=None, input_features=None)

Forward pass of the supernode pooling layer.

Parameters:
  • input_pos (torch.Tensor) – Sparse tensor with shape (batch_size * number_of_points_per_sample, 3), representing the point cloud representation of the input geometry.

  • supernode_idx (torch.Tensor) – indexes of the supernodes in the sparse tensor input_pos.

  • batch_idx (torch.Tensor | None) – 1D tensor, containing the batch index of each entry in input_pos. Default None.

  • input_features (torch.Tensor | None) – Sparse tensor with shape (batch_size * number_of_points_per_sample, number_of_features)

Returns:

Tensor with the aggregated messages for each supernode.

Return type:

dict[str, torch.Tensor]