ksuit.scripts.validate_pytorch_compatibilities¶
Classes¶
A "kitchen sink" model designed to stress-test the exact kernels we use. |
Functions¶
Strictly checks if CUDA is available and configured for all libraries. |
|
|
Generates a batch of fake graph data directly on the GPU. |
|
Sets PyTorch deterministic settings for reproducibility. |
|
Main stability test function. |
Module Contents¶
- ksuit.scripts.validate_pytorch_compatibilities.run_cuda_assertions()¶
Strictly checks if CUDA is available and configured for all libraries. Fails hard if any check fails.
- class ksuit.scripts.validate_pytorch_compatibilities.StabilityTestModel(in_features, hidden_features, out_features, aggregation='mean')¶
Bases:
torch.nn.ModuleA “kitchen sink” model designed to stress-test the exact kernels we use. It uses: - radius_graph (torch_geometric.nn.pool) - knn_graph (torch_geometric.nn.pool) - scatter (torch_scatter - for message passing) - segment_csr (torch_scatter - for global pooling)
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- aggregation = 'mean'¶
- lin1¶
- lin2¶
- lin_out¶
- radius = 1.0¶
- k = 8¶
- forward(x, pos, batch)¶
- ksuit.scripts.validate_pytorch_compatibilities.generate_fake_data(num_graphs, nodes_per_graph, num_features, device)¶
Generates a batch of fake graph data directly on the GPU.
- ksuit.scripts.validate_pytorch_compatibilities.set_deterministic_mode(seed)¶
Sets PyTorch deterministic settings for reproducibility.
- ksuit.scripts.validate_pytorch_compatibilities.main()¶
Main stability test function.