emmi_inference.models.abupt

Classes

AnchoredBranchedUPT

Base class for all neural network modules.

Functions

main()

Module Contents

class emmi_inference.models.abupt.AnchoredBranchedUPT(ndim=3, input_dim=3, output_dim_surface=4, output_dim_volume=7, dim=192, geometry_depth=1, num_heads=3, blocks='pscscs', num_volume_blocks=6, num_surface_blocks=6, radius=0.25, **kwargs)

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

Parameters:
  • ndim (int)

  • input_dim (int)

  • output_dim_surface (int)

  • output_dim_volume (int)

  • dim (int)

  • geometry_depth (int)

  • num_heads (int)

  • blocks (str)

  • num_volume_blocks (int)

  • num_surface_blocks (int)

  • radius (float)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

rope
encoder
geometry_blocks
pos_embed
surface_bias
volume_bias
blocks
surface_blocks
volume_blocks
surface_decoder
volume_decoder
forward(geometry_position, geometry_supernode_idx, geometry_batch_idx, surface_anchor_position, volume_anchor_position, surface_query_position=None, volume_query_position=None)
Parameters:
  • geometry_position (torch.Tensor)

  • geometry_supernode_idx (torch.Tensor)

  • geometry_batch_idx (torch.Tensor | None)

  • surface_anchor_position (torch.Tensor)

  • volume_anchor_position (torch.Tensor)

  • surface_query_position (torch.Tensor | None)

  • volume_query_position (torch.Tensor | None)

Return type:

dict[str, torch.Tensor]

emmi_inference.models.abupt.main()