emmi_inference.models.abupt¶
Classes¶
Base class for all neural network modules. |
Functions¶
|
Module Contents¶
- class emmi_inference.models.abupt.AnchoredBranchedUPT(ndim=3, input_dim=3, output_dim_surface=4, output_dim_volume=7, dim=192, geometry_depth=1, num_heads=3, blocks='pscscs', num_volume_blocks=6, num_surface_blocks=6, radius=0.25, **kwargs)¶
Bases:
torch.nn.ModuleBase class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to(), etc.Note
As per the example above, an
__init__()call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- Parameters:
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- rope¶
- encoder¶
- geometry_blocks¶
- pos_embed¶
- surface_bias¶
- volume_bias¶
- blocks¶
- surface_blocks¶
- volume_blocks¶
- surface_decoder¶
- volume_decoder¶
- forward(geometry_position, geometry_supernode_idx, geometry_batch_idx, surface_anchor_position, volume_anchor_position, surface_query_position=None, volume_query_position=None)¶
- Parameters:
geometry_position (torch.Tensor)
geometry_supernode_idx (torch.Tensor)
geometry_batch_idx (torch.Tensor | None)
surface_anchor_position (torch.Tensor)
volume_anchor_position (torch.Tensor)
surface_query_position (torch.Tensor | None)
volume_query_position (torch.Tensor | None)
- Return type:
- emmi_inference.models.abupt.main()¶