emmi_inference.models.abupt =========================== .. py:module:: emmi_inference.models.abupt Classes ------- .. autoapisummary:: emmi_inference.models.abupt.AnchoredBranchedUPT Functions --------- .. autoapisummary:: emmi_inference.models.abupt.main Module Contents --------------- .. py:class:: AnchoredBranchedUPT(ndim = 3, input_dim = 3, output_dim_surface = 4, output_dim_volume = 7, dim = 192, geometry_depth = 1, num_heads = 3, blocks = 'pscscs', num_volume_blocks = 6, num_surface_blocks = 6, radius = 0.25, **kwargs) Bases: :py:obj:`torch.nn.Module` Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:`to`, etc. .. note:: As per the example above, an ``__init__()`` call to the parent class must be made before assignment on the child. :ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initialize internal Module state, shared by both nn.Module and ScriptModule. .. py:attribute:: rope .. py:attribute:: encoder .. py:attribute:: geometry_blocks .. py:attribute:: pos_embed .. py:attribute:: surface_bias .. py:attribute:: volume_bias .. py:attribute:: blocks .. py:attribute:: surface_blocks .. py:attribute:: volume_blocks .. py:attribute:: surface_decoder .. py:attribute:: volume_decoder .. py:method:: forward(geometry_position, geometry_supernode_idx, geometry_batch_idx, surface_anchor_position, volume_anchor_position, surface_query_position = None, volume_query_position = None) .. py:function:: main()