emmi.datasets.drivaerml ======================= .. py:module:: emmi.datasets.drivaerml Classes ------- .. autoapisummary:: emmi.datasets.drivaerml.DrivAerMLStats emmi.datasets.drivaerml.DrivAerMLDefaultSplitIDs emmi.datasets.drivaerml.DrivAerMLDataset Module Contents --------------- .. py:class:: DrivAerMLStats .. py:attribute:: raw_pos_min :type: tuple[float] .. py:attribute:: raw_pos_max :type: tuple[float] :value: (80.0,) .. py:attribute:: surface_pressure_mean :type: tuple[float] .. py:attribute:: surface_pressure_std :type: tuple[float] :value: (269.345,) .. py:attribute:: surface_wallshearstress_mean :type: tuple[float, float, float] .. py:attribute:: surface_wallshearstress_std :type: tuple[float, float, float] :value: (2.0767, 1.35628, 1.11426) .. py:attribute:: volume_totalpcoeff_mean :type: tuple[float] :value: (0.171387,) .. py:attribute:: volume_totalpcoeff_std :type: tuple[float] :value: (0.500826,) .. py:attribute:: volume_velocity_mean :type: tuple[float, float, float] .. py:attribute:: volume_velocity_std :type: tuple[float, float, float] :value: (16.4115, 8.63614, 6.64996) .. py:attribute:: volume_vorticity_mean :type: tuple[float, float, float] :value: (3.07268, 988.601, 3.49965) .. py:attribute:: volume_vorticity_std :type: tuple[float, float, float] :value: (126922.0, 97991.9, 117787.0) .. py:attribute:: volume_vorticity_logscale_mean :type: tuple[float, float, float] .. py:attribute:: volume_vorticity_logscale_std :type: tuple[float, float, float] :value: (5.45681, 5.77081, 5.46175) .. py:attribute:: volume_vorticity_magnitude_mean :type: float :value: 3767.93 .. py:attribute:: volume_vorticity_magnitude_std :type: float :value: 198927.0 .. py:attribute:: raw_pos_z_min :type: float :value: -0.31758 .. py:class:: DrivAerMLDefaultSplitIDs .. py:attribute:: train .. py:attribute:: val .. py:attribute:: test .. py:attribute:: hidden_test .. py:method:: create_split(seed=42) :staticmethod: A helper function to create a random split of the dataset. The default indices were created with seed=42. .. py:class:: DrivAerMLDataset(split, root = None, ais_bucket_name = None, ais_endpoint = 'http://compute-permanent-node-179:8080', **kwargs) Bases: :py:obj:`ksuit.data.Dataset` Dataset implementation for DrivAerML that supports both local and AISTORE storage. Currently, supports the following properties: - position of car surface points and corresponding values for pressure and wall shear stress. - position of the volumetric cells with corresponding values for pressure, velocity and vorticity. :param split: Which split to use. "debug" will use all available "run_X" folders. "train", "valid", "test" will load the splits as specified in the "train_val_test_splits/{split}_design_ids.txt" file. :param root: path to the processed dataset, e.g. /nfs-gpu/simulation/data/drivaerml_processed/subsampled_10x. :param ais_bucket_name: The name of the ais bucket on oracle object storage, e.g. 'emmi-drivaerml-subsampled-10x'. :param ais_endpoint: The endpoint (host) running the AISTORE instance. Args: dataset_config_provider: Optional provider for dataset configuration. dataset_normalizers: A dictionary that contains normalization ComposePreProcess(ers) for each data type. The key for each normalizer can be used in the with_normalizers decorator. .. py:attribute:: is_using_ais .. py:attribute:: split .. py:property:: default_split_ids :type: dict[str, list[int]] Property to get the sorted split IDs for train, validation, and test sets, based on DEFAULT_SPLIT_*_IDS. .. py:method:: get_normalization_stats() :staticmethod: Returns the normalization stats for the dataset. Exists for backwards compatibility with downstream repo, where collators use this. .. py:method:: getitem_surface_position_vtp(idx) Retrieves surface positions (num_surface_points, 3) .. py:method:: getitem_surface_position_stl(idx) Retrieves surface positions (num_surface_points, 3) .. py:method:: getitem_surface_position_stl_resampled100k(idx) Retrieves surface positions (num_surface_points, 3) .. py:method:: getitem_surface_pressure(idx) Retrieves surface pressures (num_surface_points, 1) .. py:method:: getitem_surface_wallshearstress(idx) Retrieves surface wallshearstress (num_surface_points, 3) .. py:method:: getitem_volume_position(idx) Retrieves volume position (num_volume_points, 3) .. py:method:: getitem_volume_totalpcoeff(idx) Retrieves volume pressures (num_volume_points, 1) .. py:method:: getitem_volume_velocity(idx) Retrieves volume velocity (num_volume_points, 3) .. py:method:: getitem_volume_vorticity(idx) Retrieves volume vorticity (num_volume_points, 3) .. py:method:: getitem_volume_distance_to_surface(idx) Retrieves distance to surface of volume points (num_volume_points, 1)