emmi_inference.models.pipelines.anchor_point_sampling_precollator ================================================================= .. py:module:: emmi_inference.models.pipelines.anchor_point_sampling_precollator .. autoapi-nested-parse:: WARNING This file is a 1:1 duplicate from the ``tutorial`` folder. It is here to avoid installation of a tutorial as a package and keep it isolated. Classes ------- .. autoapisummary:: emmi_inference.models.pipelines.anchor_point_sampling_precollator.AnchorPointSamplingPreCollator Module Contents --------------- .. py:class:: AnchorPointSamplingPreCollator(items, num_points, to_prefix_and_postfix, to_prefix_midfix_postfix, keep_queries = False, seed = None) Bases: :py:obj:`ksuit.data.SampleProcessor` Randomly subsamples points from a pointcloud. Initializes the point sampling precollator. :param items: Which pointcloud items should be subsampled (e.g., input_position, output_position, ...). If multiple items are present, the subsampling will use identical indices for all items (e.g., to downsample output_position and output_pressure with the same subsampling). :param num_points: Number of points to sample. :param seed: Random seed for deterministic sampling for evaluation. Default None (i.e., no seed). If not None, requires sample index to be present in batch. .. py:attribute:: items .. py:attribute:: num_points .. py:attribute:: keep_queries :value: False .. py:attribute:: to_prefix_and_postfix .. py:attribute:: to_prefix_midfix_postfix .. py:attribute:: seed :value: None