encoder.supernode_pooling_config ================================ .. py:module:: encoder.supernode_pooling_config Classes ------- .. autoapisummary:: encoder.supernode_pooling_config.SupernodePoolingConfig Module Contents --------------- .. py:class:: SupernodePoolingConfig(/, **data) Bases: :py:obj:`pydantic.BaseModel` !!! abstract "Usage Documentation" [Models](../concepts/models.md) A base class for creating Pydantic models. .. attribute:: __class_vars__ The names of the class variables defined on the model. .. attribute:: __private_attributes__ Metadata about the private attributes of the model. .. attribute:: __signature__ The synthesized `__init__` [`Signature`][inspect.Signature] of the model. .. attribute:: __pydantic_complete__ Whether model building is completed, or if there are still undefined fields. .. attribute:: __pydantic_core_schema__ The core schema of the model. .. attribute:: __pydantic_custom_init__ Whether the model has a custom `__init__` function. .. attribute:: __pydantic_decorators__ Metadata containing the decorators defined on the model. This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1. .. attribute:: __pydantic_generic_metadata__ Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these. .. attribute:: __pydantic_parent_namespace__ Parent namespace of the model, used for automatic rebuilding of models. .. attribute:: __pydantic_post_init__ The name of the post-init method for the model, if defined. .. attribute:: __pydantic_root_model__ Whether the model is a [`RootModel`][pydantic.root_model.RootModel]. .. attribute:: __pydantic_serializer__ The `pydantic-core` `SchemaSerializer` used to dump instances of the model. .. attribute:: __pydantic_validator__ The `pydantic-core` `SchemaValidator` used to validate instances of the model. .. attribute:: __pydantic_fields__ A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects. .. attribute:: __pydantic_computed_fields__ A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects. .. attribute:: __pydantic_extra__ A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] is set to `'allow'`. .. attribute:: __pydantic_fields_set__ The names of fields explicitly set during instantiation. .. attribute:: __pydantic_private__ Values of private attributes set on the model instance. Create a new model by parsing and validating input data from keyword arguments. Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. `self` is explicitly positional-only to allow `self` as a field name. .. py:attribute:: hidden_dim :type: int :value: None Hidden dimension for positional embeddings, messages and the resulting output vector. .. py:attribute:: input_dim :type: int :value: None Number of positional dimension (e.g., input_dim=2 for a 2D position, input_dim=3 for a 3D position) .. py:attribute:: radius :type: float | None :value: None Radius around each supernode. From points within this radius, messages are passed to the supernode. .. py:attribute:: k :type: int | None :value: None Number of neighbors for each supernode. From the k-NN points, messages are passed to the supernode. .. py:attribute:: max_degree :type: int :value: None Maximum degree of the radius graph. Defaults to 32. .. py:attribute:: spool_pos_mode :type: Literal['abspos', 'relpos', 'absrelpos'] :value: None absolute space ("abspos"), relative space ("relpos") or both ("absrelpos"). :type: Type of position embeddeding .. py:attribute:: init_weights :type: emmi.types.InitWeightsMode :value: None Weight initialization of linear layers. Defaults to "truncnormal002". .. py:attribute:: readd_supernode_pos :type: bool :value: None If true, the absolute positional encoding of the supernode is concatenated to the supernode vector after message passing and linearly projected back to hidden_dim. Defaults to True. .. py:attribute:: aggregation :type: Literal['mean', 'sum'] :value: None Aggregation for message passing ("mean" or "sum"). .. py:attribute:: message_mode :type: Literal['mlp', 'linear', 'identity'] :value: None How messages are created. "mlp" (2 layer MLP), "linear" (nn.Linear), "identity" (nn.Identity). Defaults to "mlp". .. py:attribute:: num_input_features :type: int | None :value: None number of input features per point. None will fall back to a version without features. Defaults to None, which means no input features. .. py:method:: validate_radius_and_k()