layers.linear_projection_config¶
Classes¶
Configuration for a LinearProjection layer. |
Module Contents¶
- class layers.linear_projection_config.LinearProjectionConfig(/, **data)¶
Bases:
pydantic.BaseModelConfiguration for a LinearProjection layer.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- ndim: None | int = None¶
Number of dimensions of the input domain. Either None (Linear projection), 1D (sequence), 2D, or 3D. Defaults to None.
- optional: bool = None¶
If true and input_dim==output_dim (i.e., there is no up/down projection), then the identity mapping is used. Defaults to False.
- init_weights: emmi.types.InitWeightsMode = None¶
Initialization method of the weights of the MLP. Options are “torch” (i.e., similar to the module) or “truncnormal002”, or “zero”.Defaults to “torch”.
- validate_ndim()¶
Validate the ndim field to ensure it is either None, 1, 2, or 3.
- Return type:
None