emmi.modules.decoder.deep_perceiver_decoder =========================================== .. py:module:: emmi.modules.decoder.deep_perceiver_decoder .. autoapi-nested-parse:: Contains a PerceiverDecoder implementation. Classes ------- .. autoapisummary:: emmi.modules.decoder.deep_perceiver_decoder.DeepPerceiverDecoder Module Contents --------------- .. py:class:: DeepPerceiverDecoder(config) Bases: :py:obj:`torch.nn.Module` A deep Perceiver decoder module. Can be configured with different number of layers and hidden dimensions. However, it should be noted that this layer is not a full-fledged Perceiver, since it only has a cross-attention mechanism. Initialize the DeepPerceiverDecoder. :param config: Configuration for the DeepPerceiverDecoder module. .. py:attribute:: blocks .. py:method:: forward(kv, queries, unbatch_mask = None, attn_kwargs = None, condition = None) Forward pass of the model. :param x: Latent tokens as dense tensor (batch_size, num_latent_tokens, dim). :param pos: Query positions (batch_size, num_output_pos, pos_dim). :param block_kwargs: Additional arguments for the block. :param unbatch_mask: Unbatch mask. :returns: The predictions as sparse tensor (batch_size * num_output_pos, num_out_values).