emmi.modules.attention.anchor_attention.joint_anchor_attention ============================================================== .. py:module:: emmi.modules.attention.anchor_attention.joint_anchor_attention Classes ------- .. autoapisummary:: emmi.modules.attention.anchor_attention.joint_anchor_attention.JointAnchorAttention Module Contents --------------- .. py:class:: JointAnchorAttention(config) Bases: :py:obj:`emmi.modules.attention.anchor_attention.multi_branch_anchor_attention.MultiBranchAnchorAttention` Anchor attention within and across branches: all tokens attend to anchors from all configured branches. For a list of branches (e.g., A, B, C), this creates a pattern where all tokens (A_anchors, A_queries, B_anchors, B_queries, C_anchors, C_queries) attend to (A_anchors + B_anchors + C_anchors). It requires at least one anchor token to be present in the input. Example: all tokens attend to (surface_anchors, volume_anchors). This is achieved via the following attention pattern: AttentionPattern( query_tokens=["surface_anchors", "surface_queries", "volume_anchors", "volume_queries"], key_value_tokens=["surface_anchors", "volume_anchors"] ) :param dim: Model dimension. :param num_heads: Number of attention heads. :param use_rope: Whether to use rotary position embeddings. :param bias: Whether to use bias in the linear projections. :param init_weights: Weight initialization method. :param branches: A sequence of all participating branch names. :param anchor_suffix: Suffix identifying anchor tokens. Initialize internal Module state, shared by both nn.Module and ScriptModule.