ab_upt_config ============= .. py:module:: ab_upt_config Classes ------- .. autoapisummary:: ab_upt_config.AnchorBranchedUPTConfig Module Contents --------------- .. py:class:: AnchorBranchedUPTConfig(/, **data) Bases: :py:obj:`pydantic.BaseModel` !!! abstract "Usage Documentation" [Models](../concepts/models.md) A base class for creating Pydantic models. .. attribute:: __class_vars__ The names of the class variables defined on the model. .. attribute:: __private_attributes__ Metadata about the private attributes of the model. .. attribute:: __signature__ The synthesized `__init__` [`Signature`][inspect.Signature] of the model. .. attribute:: __pydantic_complete__ Whether model building is completed, or if there are still undefined fields. .. attribute:: __pydantic_core_schema__ The core schema of the model. .. attribute:: __pydantic_custom_init__ Whether the model has a custom `__init__` function. .. attribute:: __pydantic_decorators__ Metadata containing the decorators defined on the model. This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1. .. attribute:: __pydantic_generic_metadata__ Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these. .. attribute:: __pydantic_parent_namespace__ Parent namespace of the model, used for automatic rebuilding of models. .. attribute:: __pydantic_post_init__ The name of the post-init method for the model, if defined. .. attribute:: __pydantic_root_model__ Whether the model is a [`RootModel`][pydantic.root_model.RootModel]. .. attribute:: __pydantic_serializer__ The `pydantic-core` `SchemaSerializer` used to dump instances of the model. .. attribute:: __pydantic_validator__ The `pydantic-core` `SchemaValidator` used to validate instances of the model. .. attribute:: __pydantic_fields__ A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects. .. attribute:: __pydantic_computed_fields__ A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects. .. attribute:: __pydantic_extra__ A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] is set to `'allow'`. .. attribute:: __pydantic_fields_set__ The names of fields explicitly set during instantiation. .. attribute:: __pydantic_private__ Values of private attributes set on the model instance. Create a new model by parsing and validating input data from keyword arguments. Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. `self` is explicitly positional-only to allow `self` as a field name. .. py:attribute:: supernode_pooling_config :type: emmi.schemas.modules.encoder.SupernodePoolingConfig .. py:attribute:: transformer_block_config :type: emmi.schemas.modules.blocks.transformer_block_config.TransformerBlockConfig .. py:attribute:: geometry_depth :type: int :value: None Number of transformer blocks in the geometry encoder. .. py:attribute:: hidden_dim :type: int :value: None Hidden dimension of the model. .. py:attribute:: physics_blocks :type: list[Literal['shared', 'cross', 'joint', 'perceiver']] Types of physics blocks to use in the model. Options are "shared", "cross", "joint", and "perceiver". Shared: Self-attention within a branch (surface or volume). Attention blocks share weights between surface and volume. Cross: Cross-attention between surface and volume branches. Weights are shared between surface and volume. Joint: Joint attention over surface and volume points. I.e. full self-attention over both surface and volume points. Perceiver: Perceiver-style attention blocks. .. py:attribute:: num_surface_blocks :type: int :value: None Number of transformer blocks in the surface decoder. Weights are not shared with the volume decoder. .. py:attribute:: num_volume_blocks :type: int :value: None Number of transformer blocks in the volume decoder. Weights are not shared with the surface decoder. .. py:attribute:: init_weights :type: emmi.types.InitWeightsMode :value: None Weight initialization of linear layers. Defaults to "truncnormal002". .. py:attribute:: drop_path_rate :type: float :value: None Drop path rate for stochastic depth. Defaults to 0.0 (no drop path).